p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.56D4, C4⋊Q8⋊9C4, (C4×Q8)⋊3C4, C4.14C4≀C2, C42.73(C2×C4), C42⋊4C4.5C2, C23.496(C2×D4), (C22×C4).735D4, C22⋊C8.129C22, C42.6C4.17C2, (C2×C42).176C22, (C22×C4).628C23, C23.31D4.5C2, C22⋊Q8.138C22, C2.7(C23.38D4), C22.23(C8.C22), C23.37C23.6C2, C2.C42.505C22, C2.16(C23.C23), C4⋊C4.6(C2×C4), C2.23(C2×C4≀C2), (C2×Q8).6(C2×C4), (C2×C4).1152(C2×D4), (C2×C4).118(C22×C4), (C2×C4).318(C22⋊C4), C22.182(C2×C22⋊C4), SmallGroup(128,238)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.56D4
G = < a,b,c,d | a4=b4=c4=1, d2=a2b-1, ab=ba, ac=ca, dad-1=a-1, cbc-1=a2b, bd=db, dcd-1=b-1c-1 >
Subgroups: 220 in 114 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, Q8, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C2.C42, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C42, C42⋊C2, C4×Q8, C4×Q8, C22⋊Q8, C22⋊Q8, C42.C2, C4⋊Q8, C23.31D4, C42⋊4C4, C42.6C4, C23.37C23, C42.56D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4≀C2, C2×C22⋊C4, C8.C22, C23.C23, C23.38D4, C2×C4≀C2, C42.56D4
(1 12 25 21)(2 22 26 13)(3 14 27 23)(4 24 28 15)(5 16 29 17)(6 18 30 9)(7 10 31 19)(8 20 32 11)
(1 31 5 27)(2 32 6 28)(3 25 7 29)(4 26 8 30)(9 24 13 20)(10 17 14 21)(11 18 15 22)(12 19 16 23)
(1 17 25 16)(2 11 6 15)(3 10 27 19)(4 22 8 18)(5 21 29 12)(7 14 31 23)(9 28 13 32)(20 30 24 26)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,12,25,21)(2,22,26,13)(3,14,27,23)(4,24,28,15)(5,16,29,17)(6,18,30,9)(7,10,31,19)(8,20,32,11), (1,31,5,27)(2,32,6,28)(3,25,7,29)(4,26,8,30)(9,24,13,20)(10,17,14,21)(11,18,15,22)(12,19,16,23), (1,17,25,16)(2,11,6,15)(3,10,27,19)(4,22,8,18)(5,21,29,12)(7,14,31,23)(9,28,13,32)(20,30,24,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,12,25,21)(2,22,26,13)(3,14,27,23)(4,24,28,15)(5,16,29,17)(6,18,30,9)(7,10,31,19)(8,20,32,11), (1,31,5,27)(2,32,6,28)(3,25,7,29)(4,26,8,30)(9,24,13,20)(10,17,14,21)(11,18,15,22)(12,19,16,23), (1,17,25,16)(2,11,6,15)(3,10,27,19)(4,22,8,18)(5,21,29,12)(7,14,31,23)(9,28,13,32)(20,30,24,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,12,25,21),(2,22,26,13),(3,14,27,23),(4,24,28,15),(5,16,29,17),(6,18,30,9),(7,10,31,19),(8,20,32,11)], [(1,31,5,27),(2,32,6,28),(3,25,7,29),(4,26,8,30),(9,24,13,20),(10,17,14,21),(11,18,15,22),(12,19,16,23)], [(1,17,25,16),(2,11,6,15),(3,10,27,19),(4,22,8,18),(5,21,29,12),(7,14,31,23),(9,28,13,32),(20,30,24,26)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4H | 4I | ··· | 4R | 4S | 4T | 4U | 4V | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | C4≀C2 | C8.C22 | C23.C23 |
kernel | C42.56D4 | C23.31D4 | C42⋊4C4 | C42.6C4 | C23.37C23 | C4×Q8 | C4⋊Q8 | C42 | C22×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 8 | 2 | 2 |
Matrix representation of C42.56D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
1 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 0 | 4 | 0 |
5 | 8 | 0 | 0 | 0 | 0 |
7 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[16,1,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,4,0,0,0,0,13,0],[5,7,0,0,0,0,8,12,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,4,0,0,0,0,13,0,0,0] >;
C42.56D4 in GAP, Magma, Sage, TeX
C_4^2._{56}D_4
% in TeX
G:=Group("C4^2.56D4");
// GroupNames label
G:=SmallGroup(128,238);
// by ID
G=gap.SmallGroup(128,238);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,387,184,1123,1018,248,1971]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*b^-1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=b^-1*c^-1>;
// generators/relations